There are many objects in the Solar System: 8 planets, a star (our Sun), over 950,000 asteroids, comets and dwarf planets and that's not mentioning at least 180 moons.

Many of these objects orbit others. Planets, comets and many asteroids are in orbit around the Sun. Moons orbit planets, plus the variety of artificial satellites in orbit around the Earth.

SATELLITES AND ORBITS

The diagram below shows the orbits of the four rocky inner planets in the Solar System, their moons and the asteroid belt.

WHAT IS A SATELLITE?
<OMET
WHAT IS AN ORBIT?
An orbit is the path an object takes around another object.

The Moon is in orbit around the Earth, Earth is in orbit around the Sun and the Sun is in orbit around the centre of the Milky Way galaxy.

There are two broad categories of satellite: natural satellites and artifical satellites. Natural satellites such as the Earth (orbiting the Sun) and the Moon (orbiting the Earth) can be found throughout the Solar System and shouldn't be confused with artificial satellites.
Artificial satellites are 'man-made'. Examples of artificial satellites are Global Positioning System (GPS) satellites currently in orbit around the Earth and orbiters elsewhere in the solar system.
Think you know your artificial from your natural satellite? Connect the following objects to the correct category. The first one has been done for you.

EARTH‘S ARTIFI<IAL SATELLITE: SPOTTING THE ISS

The International Space Station (ISS) is 400 km above the Earth's surface and completes an orbit of the Earth every 90 minutes - the astronauts experience 16 sunrises and sunsets everyday.

This means you can spot the ISS most clear evenings from the comfort of your garden or window. The ISS will look like a bright star in the sky that moves quickly from horizon to horizon.

You can find out the right time to look outside by using the ESA Spot the Station app.

This activity will give you an idea of the approximate size of the Earth, Moon, the International Space Station and their distances from each other.

Earth's Diameter: 12,742 km

Moon's Diameter: 3,474.2 km

The International Space Station is 109 metres measured end to end.

No that's
not dust.

1. The first step is to cut out the shapes.

Each shape represents the approximate size of the Earth, Moon and ISS relative to each other. You can turn this into a 3D model by making spheres with the same diameters e.g. 12.7 cm for the Earth, 3.5 cm for the Moon and the smallest you can find for the ISS.

2. Set up the correct scale.

The distance between the Earth and Moon is: $384,400 \mathrm{~km}$.
The distance between the Earth and ISS is: $\sim 400 \mathrm{~km}$.
Place the cut-out Earth on the floor in front of you. Then measure a distance of 384 cm (or 3.84 m). This is how far the Moon is from the Earth. If you wish to add the ISS, place the ISS 0.04 cm from the Earth.

3. Calculate the Sun's scale.

The Earth lies 150.44 million km from the Sun. So to add this to your model you would need to measure a distance of $15,044 \mathrm{~cm}$ (or 1504.4 m)!
The Sun's diameter is $696,340 \mathrm{~km}$. How large a picture would you need to create a scale model of the Sun if the scale is $1 \mathrm{~cm}=10,000 \mathrm{~km}$?
earthsciences $\stackrel{\text { trom space to core }}{(1)} \mathbf{U C L}$

